
abstract 2 Tue Oct 29 09:46:03 2002 1

Kyle C. Miller
System Engineer, MISR Project (Multi-angle Imagining Spectro-Radiometer)
Science Software Systems Group (381)

Why is building a large science software system so painful? Weren't
teams of software engineers supposed to make life easier for
scientists? Does it sometimes feel as if it would be easier to write
the million lines of code in Fortran 77 yourself? The cause of this
dissatisfaction is that many of the needs of the science customer
remain hidden in discussions with software engineers until after a
system has already been built. In fact, many of the hidden needs of
the science customer conflict with stated needs and are therefore very
difficult to meet unless they are addressed from the outset in a
system's architectural requirements. What's missing is the
consideration of a small set of key software properties in initial
agreements about the requirements, the design and the cost of the
system. These key software properties are somewhat unique to the
domain of scientific programming. Therefore, software engineers tend
to overlook them until it is too late to include them efficiently.
Early consideration of this set of science-critical software
properties would promote better science and prevent the prolonged
waste and frustration involved with a bad marriage between a science
team and an expensive, long-lived software system.

After a brief introduction to a concept from the realm of software
architecture known as "Reference Architectures," the set of
ingredients which are critical to science software systems will be
explained. These ingredients include properties of software such as
design visibility, operational visibility, version traceability,
planned requirements flexibility, long-term portability,
reconfigurability, output simplicity, and user modifiability.
Examples from various JPL EOS (Earth Observing System) software
projects will be used to highlight the benefits of including these
ingredients as well as the dangers encountered when they were
overlooked. The presentation will conclude with the suggestion that
such a set of key ingredients for science software should be polished
and then adopted for use as a reference by scientists and software
engineers who collaborate in the future.

Key Ingredients Needed When
Building Large Data Processing

Systems for Scientists

Kyle C. Miller
System Engineer, MISR Project

Earth Science Data Systems Sect. 381

11/4/2002 IT Symposium
Jet Propulsion Laboratory

Miller 1

cu

i3 0

'6
'

8
Td

0

8 0

s

d)

pc
VI
8

a"
2
3

 a
VI

W

b-ll)
c c

.
r
(

8 U 8 0
E 0

&
6

n

H

4
 I

o
r

(

c.,
H

5 E i4
VI

b.r)

E 0

4

4

0
'

E
2

g

3

e
.

i4
W

E-c
2

.
e

VI
d

2
VI
!4

I
I

L

0

0

0

0

Large Science Software
- Challenges to a Science Team

- Complexity: Millions of lines of code; many contributors.
- Performance: Constant flood of satellite data through

ambitious science algorithms on a limited budget.
- Operational Robustness: Data Production done by

External Organizations.
- Access: Public promised instant access to validated data.
- Longevity: Experiment evolves over decade(s).

- Pair Science Teams with Software Teams
- Software Team engineers a hardware/software system.
- Software Best Practices[11 are used to attack “challenges.”
- The Science Team can expend more energy on science.

11/4/2002 IT Symposium
Jet Propulsion Laboratory

Miller 3

JPL The Problem
- Best Software Practices, while critical to

success, don’t alone handle the challenges.
- Focusing on the obvious hurdles of complexity,

performance and robustness in the initial design
excludes features assumed from experiences
with small science software.

- Resulting system can be too complex to
understand, too costly to modify, too difficult to
verify, too expensive to maintain, etc.. .

- Delays in data production and data quality
improvement equate to wasted scientific
opportunity.

11/4/2002 IT Symposium
Jet Propulsion Laboratory

Miller 4

JPL

Software Architecture
- The practice of good high-level software design.
- Rework to fix errors made at the high-level accounts for

half the money spent on software development. [2]
- Reference Architecture: A Proven Template that can be

Tailored to get a good design for a software system for
a particular domain. [3]

standardize software solutions.
- JPL first-of-kind experiments defy attempts to

- Yet, several architectural issues are common and are
critical to scientist satisfaction. Reference Ingredients?

11/4/2002 IT Symposium
Jet Propulsion Laboratory

Miller 5

JPL

Key Architectural Ingredients

11/4/2002

Output Product Simplicity
Version Trace-ability (in Output Products)
Internal Operational Visibility
Long-Term Design ClarityPortability (vs.
Optimization)
Targeted Investments in Flexibility
Design Visibility (at all levels)
Reconfigure-ability & User Modifiability

IT Symposium
Jet Propulsion Laboratory

Miller 6

JPL Planned Flexibility &
Output Simplicity

AIRS: Table-Driven IO
Format of Products is specified in a single table.
Parameter Names, Data Types, Data Structures, and

Underlying Reamri te Code is Generic, and is
groupings are all defined in the table.

configured by this single table.

Impact
Cheap, quick, accurate fmt. changes and additions.
Simplicity and Consistency of format is encouraged.

11/4/2002 IT Symposium
Jet Propulsion Laboratory

Miller 7

JPL Planned Flexibility &
Design Clarity

ASTER: Centralized Variable Naming
Build command can run C Preprocessor on all
components of the system.
Variable Names in C, Fortran, Perl, SQL and
database can be modified with one action.

IMPACT:
Names in all parts of the system are kept consistent

Clarity increased for maintenance programmers and
with current usage and documentation.

scientists.
11/4/2002 IT Symposium

Jet Propulsion Laboratory
Miller 8

b

M

M

a

3

cv
h

I

a

*
d

P

+

a

3

Q
)

0

0

&
Q

)
0

a

G

a

Q
)

a

U

1

8 0

0

El
a

0

m

8
5

a

U

R"
e

.

I

0

d

8
0

0

0

H

0

H

d

E
5
 d)

c
,

C
A

c!

0

13s)
crt
I

h

I

I

d)
> d)
I

I
0

I

crt
c
,

0

I

I3 G 8
4

d)
crt
Td

c
,

*
d

i d) c
,

8 13s)
a

crt
3

5

crt

crt
d)

%

3 3

M

1

a

E

0

cd
c
,

h

I

*
H

E

A

crt
d)
h

4 E crt
d)
c
,

d
)

I

3
crt
0

ce
3

d
)

8 I rj
8
.

d)
c,,

*
d

c4

0

crt
b
s)
\

sj
1

*
d

13s)
b
s)

a

E

d

e
.

I

8

H

E"
W

d)
I

0

s=1
H

4

0

0

C
I

0

A4
z z d U

a,

s

a

U

r

.~ n

u
a

1

%

i

E

0

c
,

E
%

.; 3
0

ctt
ro ctt
ctt
I

e

d

43 *?
4

0

t,
a

n

d)
m

1

d
)

U

Q
)

c
,

'
a
,

a
,u

a,

E
rd

U

G

tT'
a,
s rz" 0

a,
1

n

@ 2 0

Q

0

-
r
(

-u

d

W

u'
it)

E-r
0

0

v3

a

a

Reconfigure-ability & Portability

TES: Object Oriented Science Software
0

0

0

0

11/4/2002

C prototype of primary science retrieval algorithm
given to Software Team.
Science and Software Teams collaborated to change
top-level to C++ 00 design.
Same code can be configured to run standalone for
the scientists OR in production mode with trappings.
Production mode executable initiated by separate
00 strategy system that handles parallel data
processing plan on many small Linux systems.

IT Symposium
Jet Propulsion Laboratory

Miller 12

R L
Requirements Flexibility

MISR: Reuse of 00 Software for AirMISR
- Cost-prohibitive software development effort to process

Airborne validation experiment data skirted by elegant
reuse of existing Object Oriented software components.

TES: Risky Algorithms attacked with 00
- Portions of the science code which were well-understood

in the prototype were left in traditional structured,
procedural C which scientists are comfortable with.

- Ray Tracing Component identified as most risky. Special
effort invested in developing with C++ 00 model which
will be easy to change.

- Science Team appreciates 00 after some initial education.

11/4/2002 IT Symposium
Jet Propulsion Laboratory

Miller 13

I

c 5

+ 0

a" m

I

c
)

d)

'6
'

& 1
1

c
)

2
 c,

C
I

0

c 0

*
r
l

U

I ai 9 c, 3
(
I

E 0 cd
id

c
4

id

0

c
,

t)

4

m

c
)

G
 0 m

*
 m

4 0

c d
Z

'
v
k

O
n

rd
d)
c
)

0

d
)

a

$ k
I

I
I

